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Combined Heat and Power for Extreme Environment 

Survival and Operations

• Adequate thermal and electrical power are critical to 

operating and surviving in extreme environments, and new 

approaches are needed

• Using radioisotope based heat/power is challenging in lower 

cost or moderate duration missions (such as Commercial 

Lunar Payload Service or CLPS missions)

• Lithium-ion batteries are mass prohibitive for small landers 

operating for days or weeks without solar energy

• Cost effective combined heat and power sources could be 

significantly mission enhancing
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Chemical Heat Integrated Power Source (CHIPS)

Approach
Reaction sub-system

• Use highly exothermic reaction system, to generate thermal energy

• Ideally, a reactant / oxidizer is injected into a reactor tank containing the “fuel,” 

which then contains all of the products and remaining reactants

• Reaction rate is controlled by oxidizer flow rate

• Reaction temperature is sufficiently high for the selected thermal-to-electric 

converter technology

Heat transfer sub-system

• Use heat pipes to transfer heat from reactor to the hot side of the power 

converter, with rejected heat transferred to the lander

• Heat pipe also transfers heat directly to lander thermal loop (dropping 

temperature to match lander thermal loop)

Thermal-to-electric conversion sub-system

• Initially targeting a 35W Stirling converter or 20-30W thermoelectric module

• Transfer rejected heat from cold side to lander, supplemented by heat provided 

directly to the lander by the reactor
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Reaction Selection Criteria
• High specific energy

o Run time directly related to mass of reactants, after accounting for the passive/balance-of-plant mass

• Achieve ideal temperatures through reaction and system thermal design

o 650°C to 850°C are the limits for Stirling units

o 550-650°C is limit for TE module

• Mid to High TRL

o CHIPS is a system demonstration

o Can’t spend significant time/resources on reaction development (Early Stage Innovation Program is currently targeting this)

• Ancillary Concerns

o Need sufficient way to contain reactants

o Ideally no gaseous products

o One reactant is gas or liquid state, to control rate with flow

o Ideally use reaction vessel to contain both the fuel and the reaction products

o No need for cryogenic or high pressure storage

o Non-toxicity preferred
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Screening of Reaction Options
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Reaction ∆Hrxn (kJ/mol)
For subject reaction

∆Hrxn (kJ/kg)
Based on total reactant mass

Reaction 

type

Comments

2Li(s) + F2(g) → 2 LiF(s) -616 kJ/mol -23,748 kJ/kg Solid-gas Highly reactive

6Li(s) + ClF5(l) → 5LiF(s) + LiCl(s) -3457 kJ/mol -20,111 kJ/kg Solid-liquid Previous JPL

8Li(s) + SF6(g) → 6LiF(s) + Li2S(s) -2934 kJ/mol -14,575 kJ/kg Solid-liquid Torpedo SCEPS

2Li(s) + O2(g) → 2Li2O(s) -596 kJ/mol -13,013 kJ/kg Solid-liquid Metal/oxidizer

CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) -891 kJ/mol -11,137 kJ/kg Gas-gas Combustion

8Al(s) + 3KClO4(s) → 3KCl(s) + 4Al2O3(s) -6699 kJ/mol -10,624 kJ/kg Solid-solid Torpedo

2H2(g) + O2(g) + H2O(l) -285 kJ/mol -8,412 kJ/kg Gas-Gas Combustion

4Al(s) + 3O2(g) → 2Al2O3(s) -1676 kJ/mol -8,215 kJ/kg Solid-liquid Metal/oxidizer

4B(s) + 3ClF3(l) → BCl3(g) + 3BF3(g) -2620 kJ/mol -6,147 kJ/kg Solid-liquid Previous JPL

2Al(s) + 3CuO(s) → 3Cu(s) + Al2O3(s) -1208 kJ/mol -4,130 kJ/kg Solid-solid Thermite

N2H4(g) → N2(g) + 2H2(g) -50 kJ/mol -1,561 kJ/kg Liquid Propellant



Reaction Selection
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Reaction

High 

Specific

Energy

One

gaseous / 

liquid 

reactant

No gas 

formation

Readily 

available

Ease of

storage of 

reactants

Stable 

reactants
Comments

2Li(s) + F2(g) → 2 LiF(s) VVV V V V X V Highly reactive

6Li(s) + ClF5(l) → 5LiF(s) + LiCl(s) VVV V V X X V Previous JPL

8Li(s) + SF6(g) → 6LiF(s) + Li2S(s) VV V V VVV VVV VV Torpedo SCEPS

2Li(s) + O2(g) → 2Li2O(s) VV V V VVV V VV Metal/oxidizer

CH4(g) + 2O2(g) → CO2(g) + 2H2O(l) VV V X VVV V VVV Combustion

8Al(s) + 3KClO4(s) → 3KCl(s) + 4Al2O3(s) VV X V VVV V X Torpedo

2H2(g) + O2(g) + H2O(l) V V V VVV V VVV Combustion

4Al(s) + 3O2(g) → 2Al2O3(s) V V V VVV V VV Metal/oxidizer

4B(s) + 3ClF3(l) → BCl3(g) + 3BF3(g) V V X X X VV Previous JPL

2Al(s) + 3CuO(s) → 3Cu(s) + Al2O3(s) V X V VVV VVV VV Thermite

N2H4(g) → N2(g) + 2H2(g) V V X VVV VVV VVV Propellant



35W Sunpower Advanced Stirling Convertor (ASC)

HEAT INPUT

COOLING

(FLUID FLOW)

POWER OUT

(AC)

• Developed at NASA GRC with Sunpower

• GRC has several units of these 35W units in inventory

• Sunpower no longer producing these

• GRC dynamic power system roadmap focusing on a 50W 

unit in the future (currently under development)

Heater
Block
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Initial Assumptions and System Sizing
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ρππὡ ɇπȢσπ σπὡ

χπὡ (Stirling cold side) + σπὡ (make-up) = ρππὡ

ρσπὡ ɇσσφὬέόὶίτσȟφψπὡ

ȟ

ȟ
ρρὯὫὶὩὥὧὸὥὲὸί(no margin or heat loss)

ȟ
ψχσὡὬὯὫ (80% of mass is BOP)

Electrical output to lander:

Thermal output to lander:

Total thermal energy:

Reactant mass:

System specific energy:

Assume: 8Li(s) + SF6(g) → 6LiF(s) + Li2S(s) (4,049 Wh/kg)

Note: State-of-the-art, TRL 9 space rated Li-ion battery supplying power to avionics loads and electrical heaters 

are ~100-120 Wh/kg; primary batteries ~200-300 Wh/kg



Summary of System Thermal Design and Heat Flow

• Need to drop the typical reaction 

temperature to match Stirling hot 

side limit and the lander thermal 

loop

• Also deliver supplemental heat to 

the lander

• Use heat pipes to transfer heat from 

reactor ullage space to Stirling hot 

side, and directly to the lander
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Detailed Thermal Design

Inconel
Combustion 

Chamber

HP1HP2

Hot Block

Stirling 
HEX

FROM Pump 
Assembly

TO Pump 
Assembly

Stirling 
Engine

• Heat pipes interface to Stirling hot side via hot block

• Currently studying optimal method for make-up heat 
transfer, to supplement heat from the Stirling cold side to 
lander

• Investigating addition of 3rd heat pipe

• This design can accommodate interfacing to other 
reactors and reaction types

Heat flow

Hot block 

design
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Parametric Thermal Modeling of Key Components

Reactor

StirlingEngine

Heat Pipes

Hot Head

Set-up Thermal 
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for parametric 

analysis and 

trade studies



Layout Using Representative Payload Bay
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Initial System Mass Estimate
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• Reactants and BOP needed to produce 100Wth and 30We for 336 hours

• Reactants represent 22% of system mass in current design

• Will need more detailed reactor design to improve fidelity of estimate

• Are there opportunities to reduce BOP/passive system mass?

• Li: 4.58 kg

• SF6: 11.94 kg

• 16.52 kg total reactant mass



Opportunities to Reduce BOP Mass
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Thermal isolation plate: 6.66 kg

• 51.318 kg without thermal isolation plate

• In this situation, reactants represent ~30% of system mass

• Continuing to investigate approaches for reducing passive mass



80W Stirling Engine Design

• Switching from 35W legacy Stirling unit, to 80W Stirling design, 

per recommendation from NASA GRC

• Higher hot side temperature possible (850⁰C)
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CHIPS Development Effort Objectives

• Demonstrate reactor start-up from 20°C to operating temperature

• Demonstrate continuous heat and power output for 72 hours (~20% of 

14 days) to a dummy load

• 30-40 We (±10%)

• 100 Wth (±10%)

• Collect extensive data related to reactant flows, temperature and power 

output (to characterize parasitic losses)

• Demonstrate shutdown
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TRL 4 Demonstration Test Bed Planning
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• Utilize bell jar set-up for TRL 4 breadboard 

demonstration

• Similar to that used in MOXIE 

demonstration

• Support demonstration of task objectives 

(start-up, validate heat flow and electrical 

output, shutdown)

• Subject of detailed design activity in FY21

MOXIE test-bed



Summary

• Developed conceptual design of interest for CLPS demonstration

• Deliver 100W thermal and 30W electrical for 336 hours in ~50 kg mass 

and representative volume

• Further refining thermal model and thermal design (in progress)

• Shifting to 80W Stirling Unit

• Focusing on TRL 4 breadboard demonstration
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